908 research outputs found

    FM1-43 dye behaves as a permeant blocker of the hair-cell mechanotransducer channel

    Get PDF
    Hair cells in mouse cochlear cultures are selectively labeled by brief exposure to FM1-43, a styryl dye used to study endocytosis and exocytosis. Real-time confocal microscopy indicates that dye entry is rapid and via the apical surface. Cooling to 4°C and high extracellular calcium both reduce dye loading. Pretreatment with EGTA, a condition that breaks tip links and prevents mechanotransducer channel gating, abolishes subsequent dye loading in the presence of calcium. Dye loading recovers after calcium chelation with a time course similar to that described for tip-link regeneration. Myo7a mutant hair cells, which can transduce but have all mechanotransducer channels normally closed at rest, do not label with FM1-43 unless the bundles are stimulated by large excitatory stimuli. Extracellular perfusion of FM1-43 reversibly blocks mechanotransduction with half-blocking concentrations in the low micromolar range. The block is reduced by high extracellular calcium and is voltage dependent, decreasing at extreme positive and negative potentials, indicating that FM1-43 behaves as a permeant blocker of the mechanotransducer channel. The time course for the relief of block after voltage steps to extreme potentials further suggests that FM1-43 competes with other cations for binding sites within the pore of the channel. FM1-43 does not block the transducer channel from the intracellular side at concentrations that would cause complete block when applied extracellularly. Calcium chelation and FM1-43 both reduce the ototoxic effects of the aminoglycoside antibiotic neomycin sulfate, suggesting that FM1-43 and aminoglycosides enter hair cells via the same pathway

    Structure of cellulose microfibrils in primary cell-walls from collenchyma

    Get PDF
    In the primary walls of growing plant cells, the glucose polymer cellulose is assembled into long microfibrils a few nanometers in diameter. The rigidity and orientation of these microfibrils control cell expansion; therefore, cellulose synthesis is a key factor in the growth and morphogenesis of plants. Celery (Apium graveolens) collenchyma is a useful model system for the study of primary wall microfibril structure because its microfibrils are oriented with unusual uniformity, facilitating spectroscopic and diffraction experiments. Using a combination of x-ray and neutron scattering methods with vibrational and nuclear magnetic resonance spectroscopy, we show that celery collenchyma microfibrils were 2.9 to 3.0 nm in mean diameter, with a most probable structure containing 24 chains in cross section, arranged in eight hydrogen-bonded sheets of three chains, with extensive disorder in lateral packing, conformation, and hydrogen bonding. A similar 18-chain structure, and 24-chain structures of different shape, fitted the data less well. Conformational disorder was largely restricted to the surface chains, but disorder in chain packing was not. That is, in position and orientation, the surface chains conformed to the disordered lattice constituting the core of each microfibril. There was evidence that adjacent microfibrils were noncovalently aggregated together over part of their length, suggesting that the need to disrupt these aggregates might be a constraining factor in growth and in the hydrolysis of cellulose for biofuel production

    First measurement of the total gravitational quadrupole moment of a black widow companion

    Get PDF
    We present the first measurement of the gravitational quadrupole moment of the companion star of a spider pulsar, namely the black widow PSR J2051–0827. To this end, we have re-analysed radio timing data using a new model that is able to account for periastron precession caused by tidal and centrifugal deformations of the star as well as by general relativity. The model allows for a time-varying component of the quadrupole moment, thus self-consistently accounting for the ill-understood orbital period variations observed in these systems. Our analysis results in the first detection of orbital precession in a spider system at ω˙=−68∘.6+0∘.9−0∘.5 yr−1 and the most accurate determination of orbital eccentricity for PSR J2051–0827 with e = (4.2 ± 0.1) × 10−5. We show that the variable quadrupole component is about 100 times smaller than the average quadrupole moment QÂŻ=−2.2+0.6−1×1041 kgm2⁠. We discuss how accurate modelling of high-precision optical light curves of the companion star will allow its apsidal motion constant to be derived from our results

    Heavy Quarks on Anisotropic Lattices: The Charmonium Spectrum

    Get PDF
    We present results for the mass spectrum of ccˉc{\bar c} mesons simulated on anisotropic lattices where the temporal spacing ata_t is only half of the spatial spacing asa_s. The lattice QCD action is the Wilson gauge action plus the clover-improved Wilson fermion action. The two clover coefficients on an anisotropic lattice are estimated using mean links in Landau gauge. The bare velocity of light Îœt\nu_t has been tuned to keep the anisotropic, heavy-quark Wilson action relativistic. Local meson operators and three box sources are used in obtaining clear statistics for the lowest lying and first excited charmonium states of 1S0^1S_0, 3S1^3S_1, 1P1^1P_1, 3P0^3P_0 and 3P1^3P_1. The continuum limit is discussed by extrapolating from quenched simulations at four lattice spacings in the range 0.1 - 0.3 fm. Results are compared with the observed values in nature and other lattice approaches. Finite volume effects and dispersion relations are checked.Comment: 36 pages, 6 figur

    Optical, X-ray, and Îł-ray observations of the candidate transitional millisecond pulsar 4FGL J0427.8-6704

    Get PDF
    We present an optical, X-ray, and Îł-ray study of 1SXPS J042749.2-670434, an eclipsing X-ray binary that has an associated Îł-ray counterpart, 4FGL J0427.8-6704. This association has led to the source being classified as a transitional millisecond pulsar (tMSP) in an accreting state. We analyse 10.5 yr of Fermi LAT data and detect a Îł-ray eclipse at the same phase as optical and X-ray eclipses at the >5 σ level, a significant improvement on the 2.8 σ level of the previous detection. The confirmation of this eclipse solidifies the association between the X-ray source and the Îł-ray source, strengthening the tMSP classification. However, analysis of several optical data sets and an X-ray observation do not reveal a change in the source’s median brightness over long time-scales or a bi-modality on short time-scales. Instead, the light curve is dominated by flickering, which has a correlation time of 2.6 min alongside a potential quasi-periodic oscillation at ∌21 min. The mass of the primary and secondary stars is constrained to be M1=1.43+0.33−0.19 M⊙ and M2=0.3+0.17−0.12 M⊙ through modelling of the optical light curve. While this is still consistent with a white dwarf primary, we favour the tMSP in a low accretion state classification due to the significance of the Îł-ray eclipse detection

    A methodology for measuring the sustainability of car transport systems

    Get PDF
    Measuring the sustainability of car fleets, an important task in developing transport policy, can be accomplished with an appropriate set of indicators. We applied the Process Analysis Method of sustainability assessment to generate an indicator set in a systematic and transparent way, that is consistent with a declared definition of a sustainable transport system. Our method identifies stakeholder groups, the full range of impacts across the environmental, economic and human/social domains of sustainability, and those who generate and receive those impacts. Car users are shown by the analysis to have dual roles, both as individual makers of decisions and as beneficiaries/sufferers of the impacts resulting from communal choice. Thus car users, through their experience of service quality, are a potential force for system change. Our method addresses many of the well-known flaws in measuring transport sustainability. The indicator set created is independent of national characteristics and will be useful to transport policy practitioners and sustainable mobility researchers globally. © 2013 Elsevier Ltd

    A model-based exploration of farm-household livelihood and nutrition indicators to guide nutrition-sensitive agriculture interventions

    Get PDF
    AbstractAssessing progress towards healthier people, farms and landscapes through nutrition-sensitive agriculture (NSA) requires transdisciplinary methods with robust models and metrics. Farm-household models could facilitate disentangling the complex agriculture-nutrition nexus, by jointly assessing performance indicators on different farm system components such as farm productivity, farm environmental performance, household nutrition, and livelihoods. We, therefore, applied a farm-household model, FarmDESIGN, expanded to more comprehensively capture household nutrition and production diversity, diet diversity, and nutrient adequacy metrics. We estimated the potential contribution of an NSA intervention targeting the diversification of home gardens, aimed at reducing nutritional gaps and improving livelihoods in rural Vietnam. We addressed three central questions: (1) Do 'Selected Crops' (i.e. crops identified in a participatory process) in the intervention contribute to satisfying household dietary requirements?; (2) Does the adoption of Selected Crops contribute to improving household livelihoods (i.e. does it increase leisure time for non-earning activities as well as the dispensable budget)?; and (3) Do the proposed nutrition-related metrics estimate the contribution of home-garden diversification towards satisfying household dietary requirements? Results indicate trade-offs between nutrition and dispensable budget, with limited farm-household configurations leading to jointly improved nutrition and livelihoods. FarmDESIGN facilitated testing the robustness and limitations of commonly used metrics to monitor progress towards NSA. Results indicate that most of the production diversity metrics performed poorly at predicting desirable nutritional outcomes in this modelling study. This study demonstrates that farm-household models can facilitate anticipating the effect (positive or negative) of agricultural interventions on nutrition and the environment, identifying complementary interventions for significant and positive results and helping to foresee the trade-offs that farm-households could face. Furthermore, FarmDESIGN could contribute to identifying agreed-upon and robust metrics for measuring nutritional outcomes at the farm-household level, to allow comparability between contexts and NSA interventions

    Searching for chiral logs in the static-light decay constant

    Get PDF
    Using the clover fermion action in unquenched QCD with pion masses as low as 420 MeV, we look for evidence for chiral logs in the static-light decay constant. There is some evidence for a chiral log term, if the original static theory of Eichten and Hill is used. However, the more precise data from the static action of the ALPHA collaboration do not show any evidence for non-linear dependence of the static-light decay constant on the light quark mass. We make some comments on the connection between chiral perturbation theory for decay constants of the pion and static-light meson

    Unveiling the structural transitions during activation of a CO2 methanation catalyst Ru0/ZrO2 synthesised from a MOF precursor

    Get PDF
    Available online 5 May 2020Carbon Capture, Utilisation and Storage (CCUS) technologies are utilised to minimise net CO2 emissions and hence mitigate the impact of anthropogenic emissions on the global climate. One example of CO2 utilisation is the production of carbon-neutral methane fuel via catalytic CO2 reduction with H2 (methanation). Thermal activation of a metal impregnated metal-organic framework (MOF), 1 wt%Ru/UiO-66 in the presence of H2 and CO2 provides in situ synthesis of a highly active methanation catalyst: H2 promotes the formation of Ru0 nanoparticles, and CO2 behaves as a mild oxidant to remove framework carbon and promote ZrO2 crystallisation. The nature of the active MOF-derived Ru0/ZrO2 catalyst was studied by PXRD, TEM, and XAS, and the evolution of the parent 1 wt%Ru/UiO-66 during thermal activation monitored in operando by synchrotron PXRD. The Ru impregnated Zr-based MOF collapses on heating in H2 and CO2 to form an amorphous C and Zr containing phase that subsequently crystallises as tetragonal (t-) ZrO2 nanoparticles. These t-ZrO2 nanoparticles undergo a subsequent phase transition to the more stable monoclinic (m-) ZrO2 polymorph. In situ activation of Ru/UiO-66 generates a highly active catalyst for CO2 methanation by transforming the MOF precursor into a (carbonfree) crystalline t-ZrO2 support that stabilises highly dispersed metallic Ru nanoparticles. This insight may guide the rational design of future MOF-derived catalystsRenata Lippi, Anita M. D, Angelo, Chaoen Li, Shaun C. Howard, Ian C. Madsen, Karen Wilson, Adam F. Lee, Christopher J. Sumby, Christian J. Doonan, Jim Patel, Danielle F. Kenned

    One-Loop Renormalization of a Self-Interacting Scalar Field in Nonsimply Connected Spacetimes

    Full text link
    Using the effective potential, we study the one-loop renormalization of a massive self-interacting scalar field at finite temperature in flat manifolds with one or more compactified spatial dimensions. We prove that, owing to the compactification and finite temperature, the renormalized physical parameters of the theory (mass and coupling constant) acquire thermal and topological contributions. In the case of one compactified spatial dimension at finite temperature, we find that the corrections to the mass are positive, but those to the coupling constant are negative. We discuss the possibility of triviality, i.e. that the renormalized coupling constant goes to zero at some temperature or at some radius of the compactified spatial dimension.Comment: 16 pages, plain LATE
    • 

    corecore